Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Популярные книги


Название: Practical Graph Mining with R
Автор: Nagiza F. Samatova, William Hendrix, John Jenkins
Издательство: Chapman and Hall/CRC
Год: 2013
ISBN: 9781439860847
Серия: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series (Book 32)
Формат: pdf
Страниц: 495
Размер: 23 mb
Язык: English

Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs.

Hands-On Application of Graph Data Mining

Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks.

Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations
Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique.

Makes Graph Mining Accessible to Various Levels of Expertise
Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.









Нерабочая ссылка? Вам СЮДА


Успейте скачать!!!
Ссылки на скачивание книг ЗАПРЕЩЕННЫХ ИЗДАТЕЛЬСТВ удаляются через 3 дня с момента публикации и заменяются (по договору с АЗАПИ) партнерскими ссылками магазина LITRES!



Автор: daromir 11-02-2018, 15:05 | Напечатать |
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent





Нажимая на кнопку "Отправить", Вы даете согласие на обработку персональных данных, а также подтверждаете условия "Политики конфиденциальности" настоящего сайта.


 MirKnig.Su  ©2018     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности