Название: Data Science for Financial Econometrics Автор: Nguyen Ngoc Thach, Vladik Kreinovich, Nguyen Duc Trung Издательство: Springer Год: 2021 Формат: PDF Страниц: 622 Размер: 12.69 МБ Язык: English
This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.
Principles of Data Science Название: Principles of Data Science Автор: Hamid R. Arabnia, Kevin Daimi, Robert Stahlbock, Cristina Soviany, Leonard Heilig, Kai Brussau...
Data Science and Productivity Analytics Название: Data Science and Productivity Analytics Автор: Editors: Charles, Vincent, Aparicio, Juan, Zhu, Joe Издательство: Springer Год: 2020 Формат:...
Panel Data Econometrics with R Название: Panel Data Econometrics with R Автор: Yves Croissant, Giovanni Millo Издательство: Wiley Год: 2019 Страниц: 280 Язык: английский Формат:...
Beginning Data Science in R Название: Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist Автор: Thomas Mailund Издательство: Apress...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.