Название: Information Theory, Inference, and Learning Algorithms Автор: David J.C. MacKay Издательство: Cambridge University Press Год: 2003 Формат: pdf Страниц: 640 Размер: 11.4 mb. Язык: English
This book is aimed at senior undergraduates and graduate students in Engineering, Science, Mathematics, and Computing. It expects familiarity with calculus, probability theory, and linear algebra as taught in a first- or secondyear undergraduate course on mathematics for scientists and engineers. Conventional courses on information theory cover not only the beautiful theoretical ideas of Shannon, but also practical solutions to communication problems. This book goes further, bringing in Bayesian data modelling, Monte Carlo methods, variational methods, clustering algorithms, and neural networks.
Why unify information theory and machine learning? Because they are two sides of the same coin. In the 1960s, a single field, cybernetics, was populated by information theorists, computer scientists, and neuroscientists, all studying common problems. Information theory and machine learning still belong together. Brains are the ultimate compression and communication systems. And the state-of-the-art algorithms for both data compression and error-correcting codes use the same tools as machine learning
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Machine Learning With Python (2019) Название: Machine Learning With Python Автор: Ajit Singh Издательство: Independently published Год: 2019 Страниц: 137 Язык: английский Формат: pdf...
Information and Communication Theory Название: Information and Communication Theory Автор: Stefan Host Издательство: Wiley-IEEE Press Серия: IEEE Series on Digital & Mobile...
Numerical Linear Algebra: Theory and Applications Название: Numerical Linear Algebra: Theory and Applications Автор: Larisa Beilina, Evgenii Karchevskii, Mikhail Karchevskii Издательство: Springer...
A First Course in Machine Learning, 2nd Edition Название: A First Course in Machine Learning, 2nd Edition Автор: Mark Girolami, Simon Rogers Издательство: CRC Год: 2016 Страниц: 427 Формат: PDF...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.