Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R ScriptsКНИГИ » НАУКА И УЧЕБА
Название: Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts Автор: Paola Lecca Издательство: Springer Год: 2020 Язык: английский Формат: pdf (true), epub Размер: 10.1 MB
This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection.
Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting their own regression analysis and diagnostics without supervision.
Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.
Скачать Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Advanced Regression Models with SAS and R Название: Advanced Regression Models with SAS and R Автор: Olga Korosteleva Издательство: Chapman and Hall/CRC Год: 2018 Страниц: 325 Язык:...
Brain Network Analysis Название: Brain Network Analysis Автор: Moo K. Chung Издательство: Cambridge University Press Год: 2019 Страниц: 344 Язык: английский Формат: True...
An Introduction to Mathematical Statistics Название: An Introduction to Mathematical Statistics Автор: Fetsje Bijma, Marianne Jonker, Aad van der Vaart Издательство: Amsterdam University Press...