Real Estate Analysis in the Information Age: Techniques for Big Data and Statistical ModelingКНИГИ » ОС И БД
Название: Real Estate Analysis in the Information Age: Techniques for Big Data and Statistical Modeling Автор: Kimberly Winson-Geideman, Andy Krause, Clifford A. Lipscomb, Nick Evangelopoulos Издательство: Routledge Год: 2017 ISBN: 9781138232907 Формат: pdf Страниц: 164 Размер: 11,7 mb Язык: English
The creation, accumulation, and use of copious amounts of data are driving rapid change across a wide variety of industries and academic disciplines. This ‘Big Data’ phenomenon is the result of recent developments in computational technology and improved data gathering techniques that have led to substantial innovation in the collection, storage, management, and analysis of data.
Real Estate Analysis in the Information Age: Techniques for Big Data and Statistical Modeling focuses on the real estate discipline, guiding researchers and practitioners alike on the use of data-centric methods and analysis from applied and theoretical perspectives.? In it, the authors detail the integration of Big Data into conventional real estate research and analysis. The book is process-oriented, not only describing Big Data and associated methods, but also showing the reader how to use these methods through case studies supported by supplemental online material.? The running theme is the construction of efficient, transparent, and reproducible research through the systematic organization and application of data, both traditional and 'big'.? The final chapters investigate legal issues, particularly related to those data that are publicly available, and conclude by speculating on the future of Big Data in real estate.
Chapter 1 Traditional Real Estate Data – the what, where, when and how Chapter 2 Big Data
Section 2 Data management and related issues
Chapter 3 Managing real estate data Chapter 4 Cleaning real estate data Chapter 5 Building a transparent and repeatable workflow Chapter 6 The process of gathering ‘Big’ real estate data
Section 3 Modeling and Analysis
Chapter 7 Software tools for real estate analysis Chapter 8 Mapping and exploratory data analysis Chapter 9 Analyzing spatio-temporal changes in properties Chapter 10 Statistical techniques to identify data error and outliers Chapter 11 Pricing models Chapter 12 Analysis of unstructured text
Section 4 Concluding remarks
Chapter 13 The legalities of Big Data Chapter 14 The future of Big Data
APPENDICES Two case studies
Case Study 1: residential property valuation Case Study 2: analysis of social media content
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Discrete Data Analysis with R Название: Discrete Data Analysis with R Автор: Michael Friendly and David Meyer Издательство: CRC Press Год: 2015 Формат: PDF Размер: 177 Мб Язык:...
Computational Methods for Data Analysis Название: Computational Methods for Data Analysis Автор: Yeliz Karaca, Carlo Cattani Издательство: de Gruyter Год: 2018 Страниц: 398 Язык:...
Statistical Analysis of Microbiome Data with R Название: Statistical Analysis of Microbiome Data with R Автор: Yinglin Xia, Jun Sun Издательство: Springer Год: 2018 Язык: английский Формат: pdf...
Exploratory Data Analysis with R Название: Exploratory Data Analysis with R Автор: Roger D. Peng Издательство: Leanpub Год: 2015 Страниц: 125 Формат: True PDF Размер: 10 Mb Язык:...