Robust Representation for Data Analytics: Models and ApplicationsКНИГИ » ОС И БД
Название: Robust Representation for Data Analytics: Models and Applications Автор: Sheng Li, Yun Fu Издательство: Springer Год: 2017 ISBN: 9783319601762 Серия: Advanced Information and Knowledge Processing Формат: epub Страниц: 224 Размер: 5,4 mb Язык: English
Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary.
Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Deep Learning for Numerical Applications with SAS Название: Deep Learning for Numerical Applications with SAS Автор: Henry Bequet Издательство: SAS Institute Год: 2018 Страниц: 234 Формат: True PDF,...
MACHINE LEARNING with NEURAL NETWORKS using MATLAB Название: MACHINE LEARNING with NEURAL NETWORKS using MATLAB Автор: J. Smith Издательство: CreateSpace Independent Publishing Год: 2017 Страниц: 382...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.