Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Hypothesis Generation and Interpretation: Design Principles and Patterns for Big Data Applications
Автор: Hiroshi Ishikawa
Издательство: Springer
Серия: Studies in Big Data
Год: 2024
Страниц: 380
Язык: английский
Формат: pdf (true)
Размер: 11.1 MB

This book focuses in detail on Data Science and data analysis and emphasizes the importance of data engineering and data management in the design of Big Data applications. The author uses patterns discovered in a collection of Big Data applications to provide design principles for hypothesis generation, integrating Big Data processing and management, Machine Learning and data mining techniques.

The book proposes and explains innovative principles for interpreting hypotheses by integrating micro-explanations (those based on the explanation of analytical models and individual decisions within them) with macro-explanations (those based on applied processes and model generation). Practical case studies are used to demonstrate how hypothesis-generation and -interpretation technologies work. These are based on “social infrastructure” applications like in-bound tourism, disaster management, lunar and planetary exploration, and treatment of infectious diseases.

The novel methods and technologies proposed in Hypothesis Generation and Interpretation are supported by the incorporation of historical perspectives on science and an emphasis on the origin and development of the ideas behind their design principles and patterns.

In the Big Data era, characterized by volume, variety, and velocity, which generates a large amount of diverse data at high speed, the role of a hypothesis is more important to generate the final value, and such a hypothesis is more complicated and complex than ever. At the same time, the era of Big Data creates new vague concerns for end users as to whether Big Data relevant to them will be used appropriately.

Generating hypotheses in advance determines not only the success of scientific discoveries but also the success of investments in business and government. A model is constructed by abstracting the generated hypothesis. By executing the model, individual values and judgments are made as results.

Recently, a framework that allows development by low code has been proposed instead of traditional high-code development. In a low-code framework, it is possible to build an application by combining the components provided in advance through an interactive user interface. If low code is available, it may be possible to use it as it is, in order to explain the use of big data. However, this method is not always applicable because the low-code framework has limitations to flexible customization and not all applications can be developed only with low code. In any case, a method that is more abstract than a program and does not depend on individual programming languages (e.g., Python and Java) is required. In other words, it is necessary to be able to describe the procedures as the meanings of the programs.

Academic investigators and practitioners working on the further development and application of hypothesis generation and interpretation in Big Data computing, with backgrounds in Data Science and engineering, or the study of problem solving and scientific methods or who employ those ideas in fields like Machine Learning will find this book of considerable interest.

Contents:


Скачать Hypothesis Generation and Interpretation: Design Principles and Patterns for Big Data Applications







ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!







Автор: Ingvar16 5-01-2024, 12:04 | Напечатать |
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

    Data analysis and Information processing Data analysis and Information processing Название: Data analysis and Information processing Автор: Jovan Pehcevski Издательство: Arcler Press Год: 2023 Страниц: 420 Язык: английский Формат:...

    Data Mining: Concepts and Techniques, 4th Edition Data Mining: Concepts and Techniques, 4th Edition Название: Data Mining: Concepts and Techniques, 4th Edition Автор: Jiawei Han, Jian Pei, Hanghang Tong Издательство: Morgan Kaufmann/Elsevier Год:...

    Data Management at Scale, Second Edition (3rd Early Release) Data Management at Scale, Second Edition (3rd Early Release) Название: Data Management at Scale: Modern Data Architecture with Data Mesh and Data Fabric, Second Edition (3rd Early Release) Автор: Piethein...

    Process Safety and Big Data Process Safety and Big Data Название: Process Safety and Big Data Автор: Sagit Valeev, Natalya Kondratyeva Издательство: Elsevier Год: 2021 Формат: PDF Страниц: 307 Размер:...

    Data Mining for Co-location Patterns: Principles and Applications Data Mining for Co-location Patterns: Principles and Applications Название: Data Mining for Co-location Patterns: Principles and Applications Автор: Guoqing Zhou Издательство: CRC Press Год: 2022 Формат: PDF...

    Applications of Data Mining in Engineering, Management and Medicine Applications of Data Mining in Engineering, Management and Medicine Название: Applications of Data Mining in Engineering, Management and Medicine Автор: Neha Kaul Издательство: Arcler Press Год: 2019 Формат: PDF...

    Data Mining and Data Warehouse Data Mining and Data Warehouse Название: Data Mining and Data Warehouse Автор: Robert Karamagi Издательство: Amazon.com Services LLC Год: 2020 Страниц: 969 Язык: английский...

    Big Data: Principles and Paradigms Big Data: Principles and Paradigms Название: Big data: Principles and Paradigms Автор: Rajkumar Buyya Издательство: Morgan Kaufmann Год: 2016 Страниц: 494 Формат: True PDF Размер:...

    Big Data Management and Processing Big Data Management and Processing Название: Big Data Management and Processing Автор: Albert Y. Zomaya Издательство: CRC Год: 2017 Страниц: 487 Формат: True PDF, EPUB, AZW3 Размер: 39...

    Big Data: Algorithms, Analytics, and Applications Big Data: Algorithms, Analytics, and Applications Название: Big data: Algorithms, Analytics, and Applications Автор: Kuan-Ching Li Издательство: CRC Год: 2015 Страниц: 498 Формат: PDF Размер:...

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MirKnig.Su  ©2024     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности