Название: Data Analysis From Scratch With Python: Step By Step Guide Автор: Peters Morgan Издательство: AI Sciences LLC ASIN: B07F193447 Год: 2018 Страниц: 150 Язык: английский Формат: epub, azw3, mobi, pdf (conv) Размер: 10.16 MB
Are you thinking of becoming a data analyst using Python?
If you are looking for a complete guide to the Python language and its library that will help you to become an effective data analyst, this book is for you. This book contains the Python programming you need for Data Analysis.
From AI Sciences Publisher
Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations.
Step By Step Guide and Visual Illustrations and Examples
The Book give complete instructions for manipulating, processing, cleaning, modeling and crunching datasets in Python. This is a hands-on guide with practical case studies of data analysis problems effectively. You will learn pandas, NumPy, IPython, and Jupiter in the Process.
Target Users
This book is a practical introduction to data science tools in Python. It is ideal for analyst’s beginners to Python and for Python programmers new to data science and computer science. Instead of tough math formulas, this book contains several graphs and images.
What’s Inside This Book?
Introduction Why Choose Python for Data Science & Machine Learning Prerequisites & Reminders Python Quick Review Overview & Objectives A Quick Example Getting & Processing Data Data Visualization Supervised & Unsupervised Learning Regression Simple Linear Regression Multiple Linear Regression Decision Tree Random Forest Classification Logistic Regression K-Nearest Neighbors Decision Tree Classification Random Forest Classification Clustering Goals & Uses of Clustering K-Means Clustering Anomaly Detection Association Rule Learning Explanation Apriori Reinforcement Learning What is Reinforcement Learning Comparison with Supervised & Unsupervised Learning Applying Reinforcement Learning Neural Networks An Idea of How the Brain Works Potential & Constraints Here’s an Example Natural Language Processing Analyzing Words & Sentiments Using NLTK Model Selection & Improving Performance Sources & References
Скачать Data Analysis From Scratch With Python: Step By Step Guide
|