Handbook Statistical foundations of machine learningКНИГИ » ПРОГРАММИНГ
Название: Handbook Statistical foundations of machine learning Автор: Gianluca Bontempi Издательство: Universite Libre de Bruxelles Год: 2013 Формат: pdf Страниц: 267 Размер: 7,07 mb. Язык: English
In recent years, a growing number of organizations have been allocating vast amount of resources to construct and maintain databases and data warehouses. In scientific endeavours, data refers to carefully collected observations about some phenomenonunder study. In business, data capture information about economic trends, critical markets, competitors and customers. In manufacturing, data record machinery performances and production rates in different conditions. There are essentially two reasons why people gather increasing volumes of data: first, they think some valuable assets are implicitly coded within them, and computer technology enables effective data storage at reduced costs. The idea of extracting useful knowledge from volumes of data is common to many disciplines, from statistics to physics, from econometrics to system identification and adaptive control. The procedure for finding useful patterns in data is known by different names in different communities, viz., knowledge extraction, pattern analysis, data processing. More recently, the set of computational techniques and tools to support the modelling of large amount of data is being grouped under the more general label of machine learning.
The need for programs that can learn was stressed by Alan Turing who argued that it may be too ambitious to write from scratch programs for tasks that even human must learn to perform. This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. In particular, we focus on supervised learning problems, where the goal is to model the relation between a set of input variables, and one or more output variables, which are considered to be dependent on the inputs in some manner.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
R Programming: An Approach to Data Analytics Название: R Programming: An Approach to Data Analytics Автор: G. Sudhamathy, C. Jothi Venkateswaran Издательство: MJP Publishers Год: 2019 ...
Statistics for Data Science Название: Statistics for Data Science Автор: James D. Miller Издательство: Packt Publishing Год: 2017 Формат: PDF Размер: 3 Мб Язык: английский /...
Big Data and Business Analytics Название: Big Data and Business Analytics Автор: Jay Liebowitz Издательство: Auerbach Publications Год: 2013 ISBN: 9781466565784 Серия: Chapman &...