Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data ScientistsКНИГИ » ПРОГРАММИНГ
Название: Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists Автор: Tobias Baer Издательство: Apress Год: 2019 Страниц: 240 Язык: английский Формат: pdf (true), rtf, azw3, epub Размер: 10.1 MB
Алгоритм - это друг или враг? Человеческий разум сотворен эволюцией так, чтобы использовать короткие пути для выживания. Мы спешим с выводами, потому что наш мозг хочет сохранить нас в безопасности. Большинство наших предубеждений работают в нашу пользу, например, когда мы чувствуем, что автомобиль опасно ускоряется в нашем направлении - мы немедленно двигаемся, или когда мы решаем не кусать еду, которая, кажется, испортилась. Тем не менее, пристрастность отрицательно влияет на рабочую среду и принятие решений, касающихся наших сообществ. Хотя создание алгоритмов и машинное обучение пытаются устранить предвзятость, они, в конце концов, созданы людьми и, таким образом, подвержены тому, что мы называем алгоритмическим отклонением.
Are algorithms friend or foe? The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.
In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors?and originates in?these human tendencies. Baer dives into topics as diverse as anomaly detection, hybrid model structures, and self-improving machine learning.
While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You’ll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the impact of algorithmic bias on society and take an active role in fighting bias.
What You`ll Learn: - Study the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifact - Understand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage them - Appreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solution - Be familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic bias
Who This Book is For: We live in a world where all of us are affected by algorithms and many of us use them, maybe even unaware that an algorithm is involved. Therefore I have written this book for all of us.
Business executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses; and consumers concerned about how they might be affected by algorithmic bias
Part I: An Introduction to Biases and Algorithms1 Chapter 1: Introduction 3 Chapter 2: Bias in Human Decision-Making 9 Chapter 3: How Algorithms Debias Decisions 21 Chapter 4: The Model Development Process 29 Chapter 5: Machine Learning in a Nutshell 41 Part II: Where Does Algorithmic Bias Come From?51 Chapter 6: How Real-World Biases Are Mirrored by Algorithms 53 Chapter 7: Data Scientists’ Biases 59 Chapter 8: How Data Can Introduce Biases 69 Chapter 9: The Stability Bias of Algorithms 79 Chapter 10: Biases Introduced by the Algorithm Itself 87 Chapter 11: Algorithmic Biases and Social Media 95 Part III: What to Do About Algorithmic Bias from a User Perspective107 Chapter 12: Options for Decision-Making 109 Chapter 13: Assessing the Risk of Algorithmic Bias 117 Chapter 14: How to Use Algorithms Safely 123 Chapter 15: How to Detect Algorithmic Biases 129 Chapter 16: Managerial Strategies for Correcting Algorithmic Bias 161 Chapter 17: How to Generate Unbiased Data 167 Part IV: What to Do About Algorithmic Bias from a Data Scientist’s Perspective173 Chapter 18: The Data Scientist’s Role in Overcoming Algorithmic Bias 175 Chapter 19: An X-Ray Exam of Your Data 193 Chapter 20: When to Use Machine Learning 209 Chapter 21: How to Marry Machine Learning with Traditional Methods 215 Chapter 22: How to Prevent Bias in Self-Improving Models 223 Chapter 23: How to Institutionalize Debiasing 233 Index 241
Скачать Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists
Python for R Users Название: Python for R Users: A Data Science Approach Автор: Ajay Ohri Издательство: Wiley Год: 2017 Формат: True PDF/ePub Страниц: 358 Размер: 41.7...
Electronically Stored Information, Second Edition Название: Electronically Stored Information, Second Edition Автор: David R. Matthews Издательство: Auerbach Publications Год: 2016 Формат: True PDF...