Название: Data Science with Python and Dask Автор: Jesse C. Daniel Издательство: Manning Publications Год: 2019 Формат: EPUB, PDF Страниц: 296 Для сайта:Mirknig.su Размер: 38,4 Mb Язык: English
Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book.
About the Technology
An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease.
About the Book
Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker.
What's inside
Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps
About the Reader
For data scientists and developers with experience using Python and the PyData stack.
About the Author
Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.
Table of Contents
PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask
Data Science and Analytics with Python Название: Data Science and Analytics with Python Автор: Jesus Rogel-Salazar Издательство: Chapman and Hall/CRC Год: 2017 ISBN: 9781498742092 Серия:...
Learn Data Analysis with Python: Lessons in Coding Название: Learn Data Analysis with Python: Lessons in Coding Автор: A.J. Henley, Dave Wolf Издательство: Apress Год: 2018 Страниц: 97 Формат: PDF,...
Python for Data Analysis, 2nd Edition Название: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition Автор: Wes McKinney Издательство: O'Reilly Media Год:...
Geoprocessing with Python Название: Geoprocessing with Python Автор: Chris Garrard Издательство: Manning Publications Год: 2016 Страниц: 360 Формат: PDF Размер: 27 Mb Язык:...
Python for Data Science For Dummies Название: Python for Data Science For Dummies Автор: John Paul Mueller, Luca Massaron Издательство: Wiley Год: 2015 Страниц: 430 ISBN: 1118844181,...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.