Unsupervised Learning in Space and Time: A Modern Approach for Computer Vision using Graph-based Techniques and Deep Neural NetworksКНИГИ » ПРОГРАММИНГ
Название: Unsupervised Learning in Space and Time: A Modern Approach for Computer Vision using Graph-based Techniques and Deep Neural Networks Автор: Marius Leordeanu Издательство: Springer Год: 2020 Страниц: 315 Язык: английский Формат: pdf (true) Размер: 14.3 MB
This book addresses one of the most important unsolved problems in Artificial Intelligence (AI): the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts.
Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.
Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Visual Object Tracking with Deep Neural Networks Название: Visual Object Tracking with Deep Neural Networks Автор: Pier Luigi Mazzeo, Srinivasan Ramakrishnan, Paolo Spagnolo Издательство: ITExLi ...
Deep Learning in Mining of Visual Content Название: Deep Learning in Mining of Visual Content Автор: Akka Zemmari, Jenny Benois-Pineau Издательство: Springer Год: 2020 Страниц: 117 Язык:...
Introduction to Deep Learning (The MIT Press) Название: Introduction to Deep Learning (The MIT Press) Автор: Eugene Charniak Издательство: The MIT Press Год: 2019 Страниц: 187 Язык:...
Advances in Deep Learning Название: Advances in Deep Learning Автор: M. Arif Wani, Farooq Ahmad Bhat Издательство: Springer ISBN: 9811367930 Год: 2019 (2020 Edition)...
Natural Computing for Unsupervised Learning Название: Natural Computing for Unsupervised Learning Автор: Xiangtao Li Издательство: Springer Год: 2019 Страниц: 273 Формат: PDF, EPUB Размер: 31...