Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Semantic Modeling for Data (Early Release)
Автор: Panos Alexopoulos
Издательство: O’Reilly Media
Год: 2020-04-20
Формат: epub/pdf(conv.)
Размер: 15.3 Mb
Язык: English

Perhaps you’re an information architect on a mission to make your organization’s data more understandable and usable across applications. Or a knowledge engineer working to infuse domain knowledge into the next Alexa or Siri. Or a machine learning expert having difficulty obtaining the right data for your models. If you pursue these or similar tasks, this is your book.
Author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft and increase the usability and value of your data and applications. With this practical and comprehensive field guide, you’ll understand the pitfalls to avoid and dilemmas to overcome to build high-quality and valuable semantic representations of data.
Examine the quirks and challenges of semantic data modeling and learn how to leverage the right frameworks and tools
Avoid mistakes and bad practices that can undermine your efforts to create good data models
Learn about model development dilemmas, including representation, expressiveness and content, development, and governance
Organize and execute semantic data initiatives in your organization to tackle technical, strategic, and organizational challenges







ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!







Автор: bomboane 22-04-2020, 18:12 | Напечатать |
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MirKnig.Su  ©2024     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности