Accelerated Optimization for Machine Learning: First-Order AlgorithmsКНИГИ » ПРОГРАММИНГ
Название: Accelerated Optimization for Machine Learning: First-Order Algorithms Автор: Zhouchen Lin, Huan Li, Cong Fang Издательство: Springer Год: 2020 Страниц: 286 Язык: английский Формат: pdf (true), djvu Размер: 10.1 MB
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine Learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of Machine Learning (ML).
Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for Machine Learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in Machine Learning in a short time.
Скачать Accelerated Optimization for Machine Learning: First-Order Algorithms
Machine Learning Paradigms: Theory and Application Название: Machine Learning Paradigms: Theory and Application Автор: Aboul Ella Hassanien Издательство: Springer Год: 2019 Страниц: 474 Формат: PDF,...
Machine Learning for Model Order Reduction Название: Machine Learning for Model Order Reduction Автор: Khaled Salah Mohamed Издательство: Springer ISBN: 331975713X Год: 2018 Страниц: 99 ...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.