Graph-Powered Machine Learning introduces you to graph technology concepts, highlighting the role of graphs in machine learning and big data platforms. You’ll get an in-depth look at techniques including data source modeling, algorithm design, link analysis, classification, and clustering. As you master the core concepts, you’ll explore three end-to-end projects that illustrate architectures, best design practices, optimization approaches, and common pitfalls. Author Alessandro Negro’s extensive experience building graph-based machine learning systems shines through in every chapter, as you learn from examples and concrete scenarios based on his own work with real clients!
Graph-Based Social Media Analysis Название: Graph-Based Social Media Analysis Автор: Ioannis Pitas Издательство: CRC Press Год: 2015 Формат: PDF Размер: 25 Мб Язык: английский /...
Real-World Machine Learning Название: Real-World Machine Learning Автор: Henrik Brink, Joseph Richards, Mark Fetherolf Издательство: Manning Publications Год: 2016 Страниц: 264...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.