Statistical Regression Modeling with R: Longitudinal and Multi-level ModelingКНИГИ » ПРОГРАММИНГ
Название: Statistical Regression Modeling with R: Longitudinal and Multi-level Modeling Автор: Ding-Geng Chen, Jenny K. Chen Издательство: Springer Год: 2021 Формат: true pdf/epub Страниц: 239 Размер: 29.8 Mb Язык: English
This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Statistical Foundations of Data Science Название: Statistical Foundations of Data Science Автор: Jianqing Fan, Runze Li Издательство: Chapman and Hall/CRC Год: 2020 Страниц: 775 Язык:...
Advanced Regression Models with SAS and R Название: Advanced Regression Models with SAS and R Автор: Olga Korosteleva Издательство: Chapman and Hall/CRC Год: 2018 Страниц: 325 Язык:...
OpenIntro Statistics. Second Edition Название: OpenIntro Statistics. Second Edition Автор: Various Издательство: Autoedici?n Год: 2014 Формат: pdf Страниц: 426 Размер: 8.8 mb. Язык:...