Transfer Learning for Natural Language ProcessingКНИГИ » ПРОГРАММИНГ
Название: Transfer Learning for Natural Language Processing Автор: Paul Azunre Издательство: Manning Publications Год: 2021 Формат: True PDF Страниц: 266 Размер: 10 Mb Язык: English
Transfer Learning for Natural Language Processing gets you up to speed with the relevant ML concepts before diving into the cutting-edge advances that are defining the future of NLP. Building and training deep learning models from scratch is costly, time-consuming, and requires massive amounts of data. To address this concern, cutting-edge transfer learning techniques enable you to start with pretrained models you can tweak to meet your exact needs. In Transfer Learning for Natural Language Processing, you'll go hands-on with customizing these open source resources for your own NLP architectures.
Transfer Learning for Natural Language Processing gets you up to speed with the relevant ML concepts before diving into the cutting-edge advances that are defining the future of NLP. You’ll learn how to adapt existing state-of-the art models into real-world applications, including building a spam email classifier, a movie review sentiment analyzer, an automated fact checker, a question-answering system and a translation system for low-resource languages.
Applied Natural Language Processing with Python Название: Applied Natural Language Processing with Python: Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.