Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and PredictionКНИГИ » ПРОГРАММИНГ
Название: Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and Prediction Автор: Kao-Tai Tsai Издательство: CRC Press Год: 2022 Страниц: 261 Язык: английский Формат: pdf (true) Размер: 12.6 MB
Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.
Key Features:
Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.
Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.
Written by statistical data analysis practitioner for practitioners.
The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.
Скачать Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and Prediction
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Linear Models with Python Название: Linear Models with Python Автор: Julian J. Faraway Издательство: CRC Press Год: 2021 Страниц: 309 Язык: английский Формат: pdf Размер:...
Statistical Learning for Big Dependent Data Название: Statistical Learning for Big Dependent Data (Wiley Series in Probability and Statistics) Автор: Daniel Pena, Ruey S. Tsay Издательство:...
Statistical Foundations of Data Science Название: Statistical Foundations of Data Science Автор: Jianqing Fan, Runze Li Издательство: Chapman and Hall/CRC Год: 2020 Страниц: 775 Язык:...
Computational and Inferential Thinking Название: Computational and Inferential Thinking Автор: David Wagner , Henry Milner Издательство: Berkeley University Год: 2017 Формат: pdf Страниц:...