Deep Learning in Computational Mechanics: An Introductory CourseКНИГИ » ПРОГРАММИНГ
Название: Deep Learning in Computational Mechanics: An Introductory Course Автор: Stefan Kollmannsberger, Davide D’Angella, Moritz Jokeit, Leon Herrmann Издательство: Springer Год: 2021 Формат: ePUB, PDF Страниц: 108 Размер: 14,7 Mb Язык: English
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.
Deep Learning and Physics Название: Deep Learning and Physics Автор: Akinori Tanaka, Akio Tomiya, Koji Hashimoto Издательство: Springer Год: 2021 Формат: PDF, EPUB Страниц:...
From Machine Learning To Deep Learning Название: From Machine Learning To Deep Learning Автор: Khaled Bayoudh Издательство: Khaled Bayoudh Год: 2017 Страниц: 166 Язык: английский...
Neural Networks and Deep Learning: A Textbook Название: Neural Networks and Deep Learning: A Textbook Автор: Charu C. Aggarwal Издательство: Springer Год: 2018 Страниц: 497 Формат: PDF, EPUB...