Название: Algorithms For Big Data Автор: Moran Feldman Издательство: World Scientific Publishing Год: 2020 Страниц: 458 Язык: английский Формат: pdf (true) Размер: 19.4 MB
This unique volume is an introduction for computer scientists, including a formal study of theoretical algorithms for Big Data applications, which allows them to work on such algorithms in the future. It also serves as a useful reference guide for the general computer science population, providing a comprehensive overview of the fascinating world of such algorithms.To achieve these goals, the algorithmic results presented have been carefully chosen so that they demonstrate the important techniques and tools used in Big Data algorithms, and yet do not require tedious calculations or a very deep mathematical background.
Contents:
Preface About the Author Part I: Data Stream Algorithms
Chapter 1. Introduction to Data Stream Algorithms Chapter 2. Basic Probability and Tail Bounds 15 Chapter 3. Estimation Algorithms 51 Chapter 4. Reservoir Sampling 73 Chapter 5. Pairwise Independent Hashing 93 Chapter 6. Counting Distinct Tokens 109 Chapter 7. Sketches 133 Chapter 8. Graph Data Stream Algorithms 165 Chapter 9. The Sliding Window Model 197
Part II: Sublinear Time Algorithms Chapter 10. Introduction to Sublinear Time Algorithms 227 Chapter 11. Property Testing 237 Chapter 12. Algorithms for Bounded Degree Graphs 267 Chapter 13. An Algorithm for Dense Graphs 309 Chapter 14. Algorithms for Boolean Functions 331
Part III: Map-Reduce Chapter 15. Introduction to Map-Reduce 355 Chapter 16. Algorithms for Lists 377 Chapter 17. Graph Algorithms 401 Chapter 18. Locality-Sensitive Hashing 425 Index 443
Скачать Algorithms For Big Data
|