Название: Bayesian Networks: With Examples in R Автор: Marco Scutari, Jean-Baptiste Denis Издательство: CRC Press Год: 2022 Формат: PDF Страниц: 252 Размер: 18,6 Mb Язык: English
Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation.
The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.
Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.
Neural Networks and Statistical Learning Название: Neural Networks and Statistical Learning Автор: Ke-Lin Du, M. N. S. Swamy Издательство: Springer Год: 2014 Формат: PDF Страниц: 834 Для...
An Introduction to Machine Learning, 2nd Edition Название: An Introduction to Machine Learning, 2nd Edition Автор: Miroslav Kubat Издательство: Springer Год: 2017 Страниц: 348 Формат: PDF Размер: 10...
An Introduction to Machine Learning Название: An Introduction to Machine Learning Автор: Miroslav Kubat Издательство: Springer Год: 2015 Страниц: 291 Формат: PDF Размер: 12 Mb Язык:...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.