Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
Автор: Yigit Aydede
Издательство: CRC Press
Год: 2024
Страниц: 601
Язык: английский
Формат: pdf (true), epub
Размер: 35.4 MB

Machine Learning Toolbox for Social Scientists covers predictive methods with complementary statistical "tools" that make it mostly self-contained. The inferential statistics is the traditional framework for most data analytics courses in social science and business fields, especially in Economics and Finance. The new organization that this book offers goes beyond standard Machine Learning code applications, providing intuitive backgrounds for new predictive methods that social science and business students can follow. The book also adds many other modern statistical tools complementary to predictive methods that cannot be easily found in "econometrics" textbooks: nonparametric methods, data exploration with predictive models, penalized regressions, model selection with sparsity, dimension reduction methods, nonparametric time-series predictions, graphical network analysis, algorithmic optimization methods, classification with imbalanced data, and many others. This book delves into the first component, statistical models, without excessive abstraction. It doesn’t cover every aspect of programming, but provides sufficient coding skills for you to build predictive algorithms using R.

This book is targeted at students and researchers who have no advanced statistical background, but instead coming from the tradition of "inferential statistics". The modern statistical methods the book provides allows it to be effectively used in teaching in the social science and business fields.

Key Features:

The book is structured for those who have been trained in a traditional statistics curriculum.

There is one long initial section that covers the differences in "estimation" and "prediction" for people trained for causal analysis.

The book develops a background framework for Machine learning applications from Nonparametric methods.

SVM and NN simple enough without too much detail. It’s self-sufficient.

Nonparametric time-series predictions are new and covered in a separate section.

Additional sections are added: Penalized Regressions, Dimension Reduction Methods, and Graphical Methods have been increasing in their popularity in social sciences.

Скачать Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R







ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!







Автор: Ingvar16 19-08-2023, 03:55 | Напечатать |
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MirKnig.Su  ©2024     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности