Название: Dirty Data Processing for Machine Learning Автор: Zhixin Qi, Hongzhi Wang, Zejiao Dong Издательство: Springer Год: 2024 Страниц: 141 Язык: английский Формат: pdf Размер: 10.2 MB
In both the database and Machine Learning communities, data quality has become a serious issue which cannot be ignored. In this context, we refer to data with quality problems as “dirty data.” Clearly, for a given data mining or Machine Learning task, dirty data in both training and test datasets can affect the accuracy of results. Accordingly, this book analyzes the impacts of dirty data and explores effective methods for dirty data processing.
Although existing data cleaning methods improve data quality dramatically, the cleaning costs are still high. If we knew how dirty data affected the accuracy of Machine Learning models, we could clean data selectively according to the accuracy requirements instead of cleaning all dirty data, which entails substantial costs. However, no book to date has studied the impacts of dirty data on Machine Learning models in terms of data quality. Filling precisely this gap, the book is intended for a broad audience ranging from researchers in the database and Machine Learning communities to industry practitioners.
Readers will find valuable takeaway suggestions on: model selection and data cleaning; incomplete data classification with view-based decision trees; density-based clustering for incomplete data; the feature selection method, which reduces the time costs and guarantees the accuracy of Machine Learning models; and cost-sensitive decision tree induction approaches under different scenarios. Further, the book opens many promising avenues for the further study of dirty data processing, such as data cleaning on demand, constructing a model to predict dirty-data impacts, and integrating data quality issues into other Machine Learning models. Readers will be introduced to state-of-the-art dirty data processing techniques, and the latest research advances, while also finding new inspirations in this field.
All experiments were conducted in Intel i7CPU@2.4 GHz, completed on a computer with 8GB of memory and 1TB of hard drive, all algorithms are written in Python.
Скачать Dirty Data Processing for Machine Learning
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Data analysis and Information processing Название: Data analysis and Information processing Автор: Jovan Pehcevski Издательство: Arcler Press Год: 2023 Страниц: 420 Язык: английский Формат:...
Practical Data Science with Jupyter, 2nd Edition Название: Practical Data Science with Jupyter: Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using...
Data Mining and Data Warehouse Название: Data Mining and Data Warehouse Автор: Robert Karamagi Издательство: Amazon.com Services LLC Год: 2020 Страниц: 969 Язык: английский...
Data Cleaning Название: Data Cleaning Автор: Ihab F. Ilyas, Xu Chu Издательство: Association for Computing Machinery Год: 2019 Формат: PDF Страниц: 285 Размер: 14...
Clean Data Название: Clean Data Автор: Megan Squire Издательство: PacktPublishing Год: 2013 Формат: PDF, EPUB Размер: 26 Мб Язык: английский / English Is much...
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.