Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Quantum Machine Learning: A Modern Approach
Автор: S. Karthikeyan, M. Akila, D. Sumathi, T. Poongodi
Издательство: CRC Press
Год: 2025
Страниц: 300
Язык: английский
Формат: pdf (true), epub
Размер: 25.6 MB

This book presents the research into and application of Machine Learning in quantum computation, known as Quantum Machine Learning (QML). It presents a comparison of Quantum Machine Learning, classical Machine Learning, and traditional programming, along with the usage of quantum computing, toward improving traditional Machine Learning algorithms through case studies.

Machine Learning (ML) with supervised quantum models is a cutting-edge field that combines the power of ML algorithms with the potential of quantum computing. This approach aims to leverage the unique properties of quantum systems to enhance the performance of supervised learning tasks. In this paradigm, quantum models are utilized as the underlying framework for data processing and analysis. By harnessing the principles of superposition and entanglement, these models can handle complex computations more efficiently than classical counterparts. This opens up new possibilities for solving intricate problems in various domains, such as optimization, pattern recognition, and data classification. Quantum computers offer the potential for exponential speedup in certain computations compared to classical counterparts. Quantum machine learning algorithms aim to harness this speedup to perform computations more efficiently, especially for problems with large datasets or complex feature spaces.

In summary, the book:

Covers the core and fundamental aspects of statistics, quantum learning, and quantum machines.
Discusses the basics of machine learning, regression, supervised and unsupervised machine learning algorithms, and artificial neural networks.
Elaborates upon quantum machine learning models, quantum machine learning approaches and quantum classification, and boosting.
Introduces quantum evaluation models, deep quantum learning, ensembles, and QBoost.
Presents case studies to demonstrate the efficiency of quantum mechanics in industrial aspects.

This reference text is primarily written for scholars and researchers working in the fields of Computer Science and engineering, information technology, electrical engineering, and electronics and communication engineering.

Скачать Quantum Machine Learning: A Modern Approach








НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: Ingvar16 2-10-2024, 06:05 | Напечатать |
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MirKnig.Su  ©2021     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности