|
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Oh Shit, Git!: Recipes for Gitting Out of a Git Mess Автор: Katie Sylor-Miller, Julia Evans Издательство: wizardzines.com Год: 2018 Язык: английский Формат: pdf (true) Размер: 10.1 MB
If you find Git confusing, don’t worry! You’re not alone. People who’ve been using it every day for years still make mistakes and aren’t sure how to fix them. A lot of Git commands are confusingly named (why do you create new branches with Git checkout?) and there are 20 million different ways to do everything. This zine explains git fundamentals (what’s a SHA?) and how to fix a lot of common Git mistakes (I committed to the wrong branch!!). |
Разместил: Ingvar16 25-12-2022, 07:14 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: javascript for hackers : Learn to think like a hacker Автор: Gareth Heyes Издательство: Leanpub Год: 2022-12-21 Язык: английский Формат: pdf (true), mobi, epub Размер: 10.2 MB
Learn how to find interesting behaviour and flaws in javascript. Reading this book you will find the latest and greatest techniques for hacking javascript and generating XSS payloads. Includes ways to construct javascript using only +[]()! characters. Never heard of DOM Clobbering? This book has all the details. Have you ever wondered how a hacker approaches finding flaws in the browser and javascript? This book shares the thought processes and gives you tools to find your own flaws. It shares the basics of javascript hacking, then dives in and explains how to construct javascript payloads that don't use parentheses. |
Разместил: Ingvar16 25-12-2022, 03:56 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Creating a Wordle Game in React and TypeScript Автор: Mike Gold Издательство: Leanpub Год: 2022-11-27 Страниц: 84 Язык: английский Формат: pdf (true), epub Размер: 10.2 MB
If you really want to learn some important concepts in React and Typescript and have fun doing it, this is the book for you. The book dives into features of React such as hooks, styled-components, building utility modules, and using TypeScript to help you accomplish it all. Also you'll learn best-practices along the way. This book was written to help a developer through the process of building a React app in order to familiarize the developer with some of the important features of React and TypeScript in a fun and easy to follow experience. The book goes step by step through some of the widely used concepts in React, and illustrates best practices for using hooks, styled components, and other advanced React features. |
Разместил: Ingvar16 24-12-2022, 19:00 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: javascript & DOM Tips, Tricks, and Techniques (Volume 4) Автор: Louis Lazaris Издательство: Leanpub Год: 2022-12-21 Страниц: 123 Язык: английский Формат: pdf (true), epub Размер: 10.2 MB
This is a collection of javascript and DOM scripting tips applicable to all levels of javascript and front-end development. Most of the tips cover techniques and technologies that work in all modern browsers and most older browsers. |
Разместил: Ingvar16 24-12-2022, 18:44 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: MATLAB & Simulink AUTOSAR Blockset User’s Guide (R2022b) Автор: MathWorks Издательство: The MathWorks, Inc. Год: September 2022 Страниц: 742 Язык: английский Формат: pdf (true) Размер: 16.0 MB
AUTOSAR Blockset provides apps and blocks for developing AUTOSAR Classic and Adaptive software using Simulink models. You can design and map Simulink models to software components using the AUTOSAR Component Designer app. Alternatively, the blockset lets you generate new Simulink models for AUTOSAR by importing software component and composition descriptions from AUTOSAR XML (ARXML) files. AUTOSAR Blockset provides blocks and constructs for AUTOSAR library routines and Basic Software (BSW) services, including NVRAM and Diagnostics. By simulating the BSW services together with your application software model, you can verify your AUTOSAR ECU software without leaving Simulink. |
Разместил: Ingvar16 24-12-2022, 18:32 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Feature Selection in Machine Learning with Feature-engine: Discover feature selection algorithms that scale well and overcome the limitations of statistical models or the computational cost of wrapper methods Автор: Soledad Galli, PhD Издательство: Leanpub Год: 2022-08-24 Язык: английский Формат: pdf (true), epub Размер: 14.7 MB
Learn how to implement various feature selection methods in a few lines of code utilizing the open-source Python library Feature-engine. Feature-engine is an open-source Python library for feature engineering and feature selection. It uses Pandas and Scikit-learn under the hood to engineer and select feature subsets. Feature selection is the process of selecting a subset of features from the total variables in a data set to train machine learning algorithms. Feature selection is key for developing simpler, faster, and highly performant machine learning models. The aim of any feature selection algorithm is to create classifiers or regression models that run faster and whose outputs are easier to understand by their users. We will use the Python libraries Matplotlib, NumPy, Pandas, Scikit-learn and Feature-engine. |
Разместил: Ingvar16 24-12-2022, 18:18 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
![Программируем на Java, 5-е межд. изд.](https://mirknig.su/uploads/posts/2022-12/1671887427_44611836.jpg) Название: Программируем на Java, 5-е межд. изд. Автор: Лой Марк, Нимайер Патрик, Лук Дэниэл Издательство: Питер Год: 2023 Формат: pdf Страниц: 544 Для сайта: Mirknig.su Размер: 18,5 Мб Язык: русский
Неважно, кто вы – разработчик ПО или пользователь, в любом случае вы слышали о языке Java. В этой книге вы на конкретных примерах изучите основы Java, API, библиотеки классов, приемы и идиомы программирования. Особое внимание авторы уделяют построению реальных приложений. Вы освоите средства управления ресурсами и исключениями, а также познакомитесь с новыми возможностями языка, появившимися в последних версиях Java. • Программируйте на Java с использованием компилятора, интерпретатора и других инструментов. • Исследуйте средства управления потоками и параллельной обработки. • Изучайте обработку текста и мощные API. • Создавайте приложения и службы на базе современных сетевых коммуникаций или веб-технологий. |
Разместил: relizer 24-12-2022, 16:15 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: MATLAB Automated Driving Toolbox User’s Guide (R2022b) Автор: MathWorks Издательство: The MathWorks, Inc. Год: September 2022 Страниц: 2060 Язык: английский Формат: pdf (true) Размер: 60.3 MB
Automated Driving Toolbox provides algorithms and tools for designing, simulating, and testing ADAS and autonomous driving systems. You can design and test vision and lidar perception systems, as well as sensor fusion, path planning, and vehicle controllers. Visualization tools include a bird’s-eye-view plot and scope for sensor coverage, detections and tracks, and displays for video, lidar, and maps. The toolbox lets you import and work with HERE HD Live Map data and OpenDRIVE road networks. Using the Ground Truth Labeler app, you can automate the labeling of ground truth to train and evaluate perception algorithms. For hardware-in-the-loop (HIL) testing and desktop simulation of perception, sensor fusion, path planning, and control logic, you can generate and simulate driving scenarios. |
Разместил: Ingvar16 24-12-2022, 15:08 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: MATLAB & Simulink Vehicle Network Toolbox User’s Guide (R2022b) Автор: MathWorks Издательство: The MathWorks, Inc. Год: September 2022 Страниц: 854 Язык: английский Формат: pdf (true) Размер: 10.2 MB
Vehicle Network Toolbox provides MATLAB® functions and Simulink blocks for sending, receiving, encoding, and decoding CAN, CAN FD, J1939, and XCP messages. The toolbox lets you identify and parse specific signals using industry-standard CAN database files and then visualize the decoded signals using the CAN Explorer and CAN FD Explorer apps. Using A2L description files, you can connect to an ECU via XCP on CAN or Ethernet. You can access messages and measurement data stored in MDF files. The toolbox simplifies communication with in-vehicle networks and lets you monitor, filter, and analyze live CAN bus data or log and record messages for later analysis and replay. |
Разместил: Ingvar16 24-12-2022, 14:53 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python Автор: Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, V Adithya Krishnan Издательство: Apress Год: 2023 Страниц: 188 Язык: английский Формат: pdf (true), epub Размер: 15.4 MB
This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of Deep Learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. |
Разместил: Ingvar16 24-12-2022, 07:23 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
br>
|