|
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
![](https://mirknig.su/uploads/posts/2022-11/thumbs/1668338050_67.jpg) Название: "Поколение Python": курс для профессионалов Автор: Тимур Гуев, Артур Харисов Издательство: Stepik Год: 2022 Формат: PDF Страниц: много Размер: 57 Mb Язык: Русский
В курсе рассматриваются даты и время, дополнительные типы коллекций, итераторы, генераторы, декораторы, рекурсия, исключения, регулярные выражения и многое другое.
|
Разместил: Chipa 13-11-2022, 14:13 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Getting to Know IntelliJ IDEA : Level up your IntelliJ IDEA knowledge so that you can focus on doing what you do best Автор: Trisha Gee, Helen Scott Издательство: Leanpub Год: 2022-11-06 Страниц: 380 Язык: английский Формат: pdf (true) Размер: 129.4 MB
If we treat our IDE as a text editor, we are doing ourselves a disservice. Using a combination of tutorials and a questions-and-answers approach, Getting to Know IntelliJ IDEA will help you find ways to use IntelliJ IDEA that enable you to work comfortably and productively as a professional developer. This book is for developers using IntelliJ IDEA, whether you’re just beginning or have been using it for a while. If you’re just beginning with IntelliJ IDEA, we’ll take you on the journey of learning the tool quickly and efficiently to help you be as productive as possible. If you’ve been using IntelliJ IDEA a while, then we’ll help you expand your horizons and show you some cool tricks which will improve your productivity. At the top level, this book is primarily aimed at Java developers who use, or want to use, IntelliJ IDEA, but anyone who uses an IntelliJ Platform IDE (for example, Webstorm, PyCharm, Rider) should pick up plenty of tips. |
Разместил: Ingvar16 13-11-2022, 04:13 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances Автор: Yanan Sun, Gary G. Yen, Mengjie Zhang Издательство: Springer Серия: Studies in Computational Intelligence Год: 2023 Страниц: 335 Язык: английский Формат: pdf (true) Размер: 10.3 MB
This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks (DNN). The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields. |
Разместил: Ingvar16 12-11-2022, 14:31 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Explainable Edge AI: A Futuristic Computing Perspective Автор: Aboul Ella Hassanien, Deepak Gupta, Anuj Kumar Singh Издательство: Springer Год: 2023 Страниц: 187 Язык: английский Формат: pdf (true), epub Размер: 19.4 MB
This book presents explainability in edge AI, an amalgamation of edge computing and AI. The issues of transparency, fairness, accountability, explainability, interpretability, data-fusion, and comprehensibility that are significant for edge AI are being addressed in this book through explainable models and techniques. The concept of explainable edge AI is new in front of the academic and research community, and consequently, it will undoubtedly explore multiple research dimensions. The book presents the concept of explainability in edge AI which is the amalgamation of edge computing and AI. In the futuristic computing scenario, the goal of explainable edge AI will be to execute the AI tasks and produce explainable results at the edge. First, this book explains the fundamental concepts of explainable artificial intelligence (XAI), then it describes the concept of explainable edge AI, and finally, it elaborates on the technicalities of explainability in edge AI. Owing to the quick transition in the current computing scenario and integration with the latest AI-based technologies, it is significant to facilitate people-centric computing through explainable edge AI. The proposed protocol is implemented using TensorFlow and Keras libraries in Python language. |
Разместил: Ingvar16 12-11-2022, 14:05 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Deep Learning: From Big Data to Artificial Intelligence with R Автор: Dr. Stephane Tuffery Издательство: Wiley Год: 2023 Страниц: 542 Язык: английский Формат: pdf (true) Размер: 10.9 MB
A concise and practical exploration of key topics and applications in Data Science. In Deep Learning: From Big Data to Artificial Intelligence with R , expert researcher Dr. Stephane Tuffery delivers an insightful discussion of the applications of deep learning and big data that focuses on practical instructions on various software tools and deep learning methods relying on three major libraries: MXNet, PyTorch, and Keras-TensorFlow. In the book, numerous, up-to-date examples are combined with key topics relevant to modern data scientists, including processing optimization, neural network applications, natural language processing, and image recognition. Classroom-tested and intuitively organized, Deep Learning: From Big Data to Artificial Intelligence with R offers complimentary access to a companion website that provides R and Python source code for the examples offered in the book. |
Разместил: Ingvar16 12-11-2022, 13:23 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Machine Learning on Commodity Tiny Devices: Theory and Practice Автор: Song Guo, Qihua Zhou Издательство: CRC Press Год: 2023 Страниц: 268 Язык: английский Формат: pdf (true) Размер: 30.3 MB
This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. It presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. |
Разместил: Ingvar16 12-11-2022, 07:01 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Building Feature Extraction with Machine Learning: Geospatial Applications Автор: Bharath H. Aithal, Prakash P.S. Издательство: CRC Press Год: 2023 Страниц: 145 Язык: английский Формат: pdf (true) Размер: 13.2 MB
Big geospatial datasets created by large infrastructure projects require massive computing resources to process. Feature extraction is a process used to reduce the initial set of raw data for manageable image processing, and Machine Learning (ML) is the science that supports it. This book focuses on feature extraction methods for optical geospatial data using ML. It is a practical guide for professionals and graduate students who are starting a career in information extraction. It explains spatial feature extraction in an easy-to-understand way and includes real case studies on how to collect height values for spatial features, how to develop 3D models in a map context, and others. Explains the methods for estimating object height from optical satellite remote sensing images using Python. |
Разместил: Ingvar16 12-11-2022, 06:44 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Normalization Techniques in Deep Learning Автор: Lei Huang Издательство: Springer Год: 2022 Страниц: 117 Язык: английский Формат: pdf (true), epub Размер: 13.5 MB
This book presents and surveys normalization techniques with a deep analysis in training deep neural networks. In addition, the author provides technical details in designing new normalization methods and network architectures tailored to specific tasks. Normalization methods can improve the training stability, optimization efficiency, and generalization ability of deep neural networks (DNNs) and have become basic components in most state-of-the-art DNN architectures. The author provides guidelines for elaborating, understanding, and applying normalization methods. This book is ideal for readers working on the development of novel deep learning algorithms and/or their applications to solve practical problems in computer vision and machine learning tasks. The book also serves as a resource researchers, engineers, and students who are new to the field and need to understand and train DNNs. |
Разместил: Ingvar16 12-11-2022, 05:43 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Пять строк кода. Роберт Мартин рекомендует Автор: Кристиан Клаусен Издательство: Питер Год: 2023 Страниц: 359 Язык: русский Формат: pdf Размер: 10.9 MB
В каждой кодовой базе есть ошибки и слабые места, которые нужно найти и исправить. Правильный рефакторинг сделает ваш код элегантным, удобным для чтения и простым в обслуживании. Познакомьтесь с уникальным подходом, позволяющим реализовать любой метод в пяти строках кода. И не забывайте про тайну, хорошо известную большинству senior-разработчиков: иногда проще ухудшить код и вернуться к его исправлению позже. «Пять строк кода» — это свежий взгляд на рефакторинг для разработчиков любого уровня. Вы узнаете, когда проводить рефакторинг, как использовать паттерны, а также научитесь определять признаки, которые говорят о том, что код необходимо удалить. Для разработчиков всех уровней. В примерах используется доступный и понятный синтаксис TypeScript, который позволяет перейти к любому языку высокого уровня. |
Разместил: Ingvar16 11-11-2022, 19:27 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
![](/templates/mirknig91169/images/1.gif) |
|
![](/templates/mirknig91169/images/3.gif) |
|
|
![](/templates/mirknig91169/images/block/8.gif) |
| ![](/templates/mirknig91169/images/block/9.gif) |
|
Название: Natural Language Processing in Action, 2nd Edition (MEAP v.6) Автор: Hobson Lane Издательство: Manning Publications Год: 2022 Страниц: 359 Язык: английский Формат: pdf (true) Размер: 27.4 MB
Develop your NLP skills from scratch! This revised bestseller now includes coverage of the latest Python packages, Transformers, the HuggingFace packages, and chatbot frameworks. Natural Language Processing in Action has helped thousands of data scientists build machines that understand human language. In this new and revised edition, you’ll discover state-of-the art NLP models like BERT and HuggingFace transformers, popular open-source frameworks for chatbots, and more. As you go, you’ll create projects that can detect fake news, filter spam, and even answer your questions, all built with Python and its ecosystem of data tools. |
Разместил: Ingvar16 11-11-2022, 12:35 | Комментарии: 0 | Подробнее
| | | |
![](/templates/mirknig91169/images/8.gif) |
| ![](/templates/mirknig91169/images/9.gif) |
br>
|