Название: Deep Neural Networks in a Mathematical Framework Автор: Anthony L. Caterini, Dong Eui Chang Издательство: Springer Год: 2018 ISBN: 9783319753041 Серия: SpringerBriefs in Computer Science Формат: epub, pdf Страниц: 84 Размер: 5,6 mb Язык: English
The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks.
This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Deep Learning from Scratch (Early Release) Название: Deep Learning from Scratch (Early Release) Автор: Seth Weidman Издательство: O’Reilly Media ISBN: 9781492041405 Год: 2019-05-03 (First...
Deep Learning with R (2019) Название: Deep Learning with R Автор: Abhijit Ghatak Издательство: Springer ISBN: 9811358494 Год: 2019 Страниц: 259 Язык: английский Формат: pdf...
Neural Networks and Deep Learning: A Textbook Название: Neural Networks and Deep Learning: A Textbook Автор: Charu C. Aggarwal Издательство: Springer Год: 2018 Страниц: 497 Формат: PDF, EPUB...
Make Your Own Neural Network Название: Make Your Own Neural Network Автор: Tariq Rashid Издательство: CreateSpace Год: 2016 Страниц: 222 Формат: True PDF, EPUB, MOBI Размер: 28...