Scaling Up Machine Learning: Parallel and Distributed ApproachesКНИГИ » ПРОГРАММИНГ
Название: Scaling Up Machine Learning: Parallel and Distributed Approaches Автор: Ron Bekkerman, Mikhail Bilenko, John Langford Издательство: Cambridge University Press Год: 2011 ISBN: 9780521192248 Формат: pdf Страниц: 492 Размер: 10,5 mb Язык: English
Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs, and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce, and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised, and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms and deep dives into several applications make the book equally useful for researchers, students, and practitioners.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Python Machine Learning (2019) Название: Python Machine Learning Автор(ы): Wei-Meng Lee Издательство: Wiley Год: 2019 Страниц: 307 Формат: PDF Размер: 10 Мб Язык: English ...
Lie Group Machine Learning Название: Lie Group Machine Learning Автор: Fanzhang Li Издательство: de Gruyter Год: 2019 Страниц: 533 Формат: PDF Размер: 14 Mb Язык: English This...
Machine Learning with R Название: Machine Learning with R Автор: Abhijit Ghatak Издательство: Springer ISBN: 9811068070 Год: 2017 Страниц: 224 Язык: английский Формат:...