" "


: Deep Reinforcement Learning in Action
: Alexander Zai, Brandon Brown
: Manning Publications
: 2020
: True PDF
: 384
: 17,3 Mb
: English

Humans learn best from feedbackwe are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques youll need to implement it into your own projects.
About the Technology
Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error.
About the book
Deep Reinforcement Learning in Action teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, youll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, youll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym.
What's inside

Building and training DRL networks
The most popular DRL algorithms for learning and problem solving
Evolutionary algorithms for curiosity and multi-agent learning
All examples available as Jupyter Notebooks


: vitvikvas 14-07-2022, 08:28 | |
, .


, , .

 MirKnig.Su  2021