Название: Bandit Algorithms Автор: Tor Lattimore, Csaba Szepesvari Издательство: Cambridge University Press Год: 2020 Формат: PDF Страниц: 537 Размер: 13 Mb Язык: English
Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Algorithms for Optimization (2019) Название: Algorithms for Optimization Автор: Mykel J. Kochenderfer and Tim A. Wheeler Издательство: The MIT Press Год: 2019 Страниц: 521 Язык:...
Analytic Methods in Systems and Software Testing Название: Analytic Methods in Systems and Software Testing Автор: Ron S. Kenett, Fabrizio Ruggeri, Frederick W. Faltin Издательство: Wiley Год:...
Foundations of Machine Learning, Second Edition Название: Foundations of Machine Learning, Second Edition Автор: Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar Издательство: The MIT Press...
Bandit Algorithms for Website Optimization Название: Bandit Algorithms for Website Optimization Автор: John Myles White Издательство: O'Reilly Media Год: 2012 Формат: PDF Размер: 7 Мб Язык:...