Название: Spatial Predictive Modelling with R Автор: Jin Li Издательство: CRC Press Год: 2022 Формат: PDF Страниц: 404 Размер: 75 Mb Язык: English
Spatial predictive modeling (SPM) is an emerging discipline in applied sciences, playing a key role in the generation of spatial predictions in various disciplines. SPM refers to preparing relevant data, developing optimal predictive models based on point data, and then generating spatial predictions. This book aims to systematically introduce the entire process of SPM as a discipline. The process contains data acquisition, spatial predictive methods and variable selection, parameter optimization, accuracy assessment, and the generation and visualization of spatial predictions, where spatial predictive methods are from geostatistics, modern statistics, and machine learning.
The key features of this book are:
•Systematically introducing major components of SPM process. •Novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods. •Novel predictive accuracy-based variable selection techniques for spatial predictive methods. •Predictive accuracy-based parameter/model optimization. •Reproducible examples for SPM of various data types in R.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Geostatistical Functional Data Analysis Название: Geostatistical Functional Data Analysis Автор: Jorge Mateu, Ramon Giraldo Издательство: Wiley Год: 2022 Страниц: 451 Язык: английский...
Fundamentals of Spatial Analysis and Modelling Название: Fundamentals of Spatial Analysis and Modelling Автор: Jay Gao Издательство: CRC Press Год: 2022 Формат: PDF Страниц: 376 Размер: 73 mb...
Geostatistics for Compositional Data with R Название: Geostatistics for Compositional Data with R Автор: Raimon Tolosana-Delgado, Ute Mueller Издательство: Springer Год: 2021 Формат: PDF...