Distributed Machine Learning and Gradient OptimizationКНИГИ » ПРОГРАММИНГ
Название: Distributed Machine Learning and Gradient Optimization Автор: Jiawei Jiang, Bin Cui, Ce Zhang Издательство: Springer Год: 2022 Формат: True PDF Страниц: 179 Размер: 10 Mb Язык: English
This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal to a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
С этой публикацией часто скачивают:
Tree-Based Machine Learning Methods in SAS Viya Название: Tree-Based Machine Learning Methods in SAS Viya Автор: Sharad Saxena Издательство: SAS Institute Inc. Год: 2022 Формат: ePUB Страниц: 364...
Linear Algebra and Learning from Data Название: Linear Algebra and Learning from Data Автор: Gilbert Strang Издательство: Wellesley-Cambridge Press Год: 2019 Страниц: 449 Язык:...