|
|
|
|
|
|
|
| |
|
Название: Введение в Rust Автор: Максим Смирнов Издательство: Stepik Год: 2024 Формат: HTML Страниц: много Размер: 212 Mb Язык: Русский
Этот курс идеально подойдет для тех кто имеет начальные навыки программирования или их вовсе нет. Весь материал преподнесен очень понятным языком и без воды. В самом курсе вы освоите базу программирования, а именно: переменные, основные структуры данных, арифметические операции, методы, функции, поймете рекурсию и многое чего другого.
|
Разместил: Chipa 15-11-2024, 10:32 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: MATLAB Deep Learning Toolbox User’s Guide (R2024b) Автор: Mark Hudson Beale, Martin T. Hagan, Howard B. Demuth Издательство: The MathWorks, Inc. Год: September 2024 Страниц: 5466 Язык: английский Формат: pdf (true) Размер: 86.1 MB
Deep Learning (DL) is a branch of Machine Learning (ML) that teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to “learn” information directly from data without relying on a predetermined equation as a model. Deep Learning is especially suited for image recognition, which is important for solving problems such as facial recognition, motion detection, and many advanced driver assistance technologies such as autonomous driving, lane detection, pedestrian detection, and autonomous parking. Deep Learning Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks. Deep Learning Toolbox provides a framework for designing and implementing deep neural networks with algorithms, pretrained models, and apps. You can exchange models with TensorFlow and PyTorch through the ONNX format and import models from TensorFlow-Keras and Caffe. The toolbox supports transfer learning with DarkNet-53, ResNet-50, NASNet, SqueezeNet and many other pretrained models. |
Разместил: Ingvar16 15-11-2024, 06:19 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Mastering Algorithm in Python Автор: Ed Norex Издательство: HiTeX Press Год: 2024 Страниц: 556 Язык: английский Формат: pdf, epub, mobi Размер: 10.1 MB
Master the art of solving complex problems with "Mastering Algorithm in Python," your comprehensive guide to understanding and applying algorithms using one of the most versatile programming languages. Whether you're a beginner eager to dive into the world of Computer Science or a seasoned professional looking to sharpen your skills, this book covers everything from fundamental concepts to advanced techniques. Unlock the secrets of data structures, delve into the intricacies of searching and sorting algorithms, navigate through the complexities of graph algorithms, and conquer challenges with dynamic programming, greedy algorithms, divide and conquer strategies, and backtracking algorithms. Elevate your expertise further as you explore advanced topics including Machine Learning and graphical models, all illustrated through clear, practical Python examples. |
Разместил: Ingvar16 15-11-2024, 05:41 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Explainable Machine Learning for Geospatial Data Analysis: A Data-Centric Approach Автор: Courage Kamusoko Издательство: CRC Press Год: 2025 Страниц: 280 Язык: английский Формат: pdf (true), epub Размер: 44.9 MB
Explainable Machine Learning (XML), a subfield of Artificial Intelligence (AI), is focused on making complex AI models understandable to humans. This book highlights and explains the details of Machine Learning models used in geospatial data analysis. It demonstrates the need for a data-centric, explainable Machine Learning approach to obtain new insights from geospatial data. It presents the opportunities, challenges, and gaps in the Machine Learning and Deep Learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes and in modeling forest canopy height and aboveground biomass density. The author also includes guidelines and code scripts (R, Python) valuable for practical readers. |
Разместил: Ingvar16 14-11-2024, 20:20 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Паттерны проектирования javascript Автор: Ди Франческо Уго Издательство: Спринт Бук Год: 2025 Формат: pdf Страниц: 304 Для сайта: Mirknig.su Размер: 21,8 Мб Язык: русский
Раскройте потенциал паттернов проектирования javascript. Найдите структурированные решения распространенных задач разработки, пригодные для многократного использования и повышающие масштабируемость, производительность и удобство сопровождения кода. Узнайте, как применение этих паттернов позволяет создавать более чистый и понятный код, способствует организации совместной работы в команде, сокращает количество ошибок и экономит время и силы. Автор дает исчерпывающее представление о паттернах проектирования в современном javascript (ES6+) и приводит практические примеры их применения. Сначала вы познакомитесь с порождающими, структурными и поведенческими паттернами проектирования в идиоматическом для javascript стиле, а затем переключитесь на архитектурные паттерны и паттерны пользовательского интерфейса. Вы узнаете, как применять паттерны, характерные для таких библиотек, как React, и распространять их на фронтенд и микрофронтенд. В последней части книги представлены и проиллюстрированы паттерны улучшения производительности и безопасности, включая обмен сообщениями, события и стратегии загрузки ресурсов, а также паттерны высокопроизводительных асинхронных вычислений. В издании приводятся примеры использования React и Next.js, а также javascript и Web API. Они помогут выбрать и внедрить проверенные паттерны проектирования в различных веб-экосистемах и изменить ваш подход к разработке. |
Разместил: relizer 14-11-2024, 18:15 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Explainable Artificial Intelligence: A Practical Guide Автор: Parikshit Narendra Mahalle, Yashwant Sudhakar Ingle Издательство: River Publishers Год: 2024 Страниц: 104 Язык: английский Формат: pdf (true), epub Размер: 14.6 MB
This book explores the growing focus on Artificial Intelligence (AI) systems in both industry and academia. Explainable Artificial Intelligence (XAI) comprises a set of frameworks and tools to assist us in forecasting futuristic events with the aid of Machine Learning/evolutionary and intelligent techniques. XAI helps to improve the performance of the automated models and to train the automated tools for diverse engineering purposes. XAI can also assist in the generation of feature attributions for forecasting the model behavior with respect to different inputs. XAI is used in diverse fields such as marketing, Data Science, engineering, medical science, and economics. Explainable Artificial Intelligence: A Practical Guide is a comprehensive guide to the reader which covers the fundamentals of traditional AI to the current status of XAI. In a nutshell, this book puts forward the best research roadmaps, strategies and challenges to design and develop XAI applications. |
Разместил: Ingvar16 14-11-2024, 16:05 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: MATLAB Statistics and Machine Learning Toolbox User’s Guide (R2024b) Автор: The MathWorks Издательство: The MathWorks, Inc. Год: September 2024 Страниц: 12578 Язык: английский Формат: pdf (true) Размер: 57.4 MB
"Инструментарий статистики и машинного обучения" предоставляет функции и приложения для описания, анализа и моделирования данных. Вы можете использовать описательную статистику, визуализацию и кластеризацию для анализа данных, сопоставления распределений вероятностей с данными, генерации случайных чисел для моделирования методом Монте-Карло и проверки гипотез. Алгоритмы регрессии и классификации позволяют вам делать выводы на основе данных и использовать приложение Classification и Regression Learner или использовать AutoML для интерактивного анализа. Для анализа многомерных данных и извлечения признаков инструментарий предоставляет методы анализа основных компонентов (PCA), регуляризации, сокращения и выбора признаков, которые помогут вам получить наилучшие прогнозы. |
Разместил: Ingvar16 14-11-2024, 15:16 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Серия "Программирование для всех" в 4 книгах Автор(ы): разные Издательство: Москва Год: 2023-2024 Страниц: 1000+ Формат: fb2, pdf Размер: 16 Мб Язык: русский
Очень хочется стать программистом и войти в IT, но не знаете с чего начать? Поздравляю, в ваших руках учебник нового поколения – без кучи непонятных слов и кодов расскажем про инструменты и библиотеки для программирования на Python. И все это заправлено лайфхаками, вдохновляющими историями из мира настоящих хакеров и игрофикацией – потому что обучение не должно быть скучным. |
Разместил: MIHAIL62 14-11-2024, 14:12 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: High-Performance Algorithmic Trading Using AI: Strategies and Insights for Developing Cutting-Edge Trading Algorithms Автор: Melick R. Baranasooriya Издательство: BPB Publications Год: 2024 Страниц: 358 Язык: английский Формат: pdf, epub (true), mobi Размер: 10.1 MB
"High-Performance Algorithmic Trading using AI" is a comprehensive guide designed to empower both beginners and experienced professionals in the finance industry. This book equips you with the knowledge and tools to build sophisticated, high-performance trading systems. It starts with basics like data preprocessing, feature engineering, and ML. Then, it moves to advanced topics, such as strategy development, backtesting, platform integration using Python for financial modeling, and the implementation of AI models on trading platforms. Each chapter is crafted to equip readers with actionable skills, ranging from extracting insights from vast datasets to developing and optimizing trading algorithms using Python's extensive libraries. It includes real-world case studies and advanced techniques like Deep Learning and reinforcement learning. The book wraps up with future trends, challenges, and opportunities in algorithmic trading. |
Разместил: Ingvar16 14-11-2024, 05:29 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide Автор: Van Thanh Tien Nguyen, Nhut T.M. Vo, Van Chinh Truong Издательство: CRC Press Год: 2025 Страниц: 361 Язык: английский Формат: pdf (true) Размер: 13.4 MB
As multicriteria decision-making (MCDM) continues to grow and evolve, Machine Learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems. This book is intended to guide researchers, practitioners, and students interested in the intersection of ML and MCDM for optimal design. Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is a comprehensive resource that bridges the gap between ML and MCDM. It offers a practical approach by demonstrating the application of ML and MCDM algorithms to real-world problems. Through case studies and examples, it showcases the effectiveness of these techniques in optimal design. The book also provides a comparative analysis of conventional MCDM algorithms and Machine Learning techniques, enabling readers to make informed decisions about their use in different scenarios. This book is designed for professionals, researchers, and practitioners in engineering, Computer Science, sustainability, and related fields. It is also a valuable resource for students and academics who wish to expand their knowledge of Machine Learning applications in multicriteria decision-making. |
Разместил: Ingvar16 13-11-2024, 19:18 | Комментарии: 0 | Подробнее
| | | |
|
| |
br>
|