Preface xv
Part I: Sensing Materials for Smart Membranes 1
1 Interfaces Based on Carbon Nanotubes, Ionic Liquids and Polymer Matrices for Sensing and Membrane Separation Applications 3
Maria Bel?n Serrano-Santos, Ana Corres Ortega and Thomas Schafer
1.1 Introduction 3
1.2 Ionic Liquid-Carbon Nanotubes Composites for Sensing Interfaces 5
1.3 Ionic Liquid Interfaces for Detection and Separation of Gases and Solvents 11
1.4 Ionic Liquid-Polymer Interfaces for Membrane Separation Processes 16
1.5 Conclusions 18
Acknowledgement 19
References 19
2 Photo-Responsive Hydrogels for Adaptive Membranes 21
David Diaz Diaz and Jeremiah A. Johnson
2.1 Introduction 21
2.2 Photo-Responsive Hydrogel Membranes 23
2.2.1 Photo-Responsive Moiety: Cinnamylidene 23
2.2.2 Photo-Responsive Moiety: Triphenylmethane Leuco Derivatives 29
2.2.3 Photo-Responsive Moiety: Azobenzene 36
2.2.4 Photo-Responsive Moiety: Spirobenzopyran 38
2.2.5 A Comparative Example Of Different Chromophores 42
2.3 Photo-Thermally Responsive Hydrogel Membranes 44
2.3.1 Optical absorber: Gold Nanoparticles 45
2.3.2 Optical Absorber: Graphene Oxide 46
2.4 Summary 46
2.5 Acknowledgements 48
Abbreviations 48
References 49
3 Smart Vesicles: Synthesis, Characterization and Applications 53
Jung-Keutt Kim, Chang-Soo Lee and Eunji Lee
3.1 Introduction 53
3.2 Synthesis of Soft Vesicles 54
3.2.1 Self-assembly into Vesicles 55
3.2.2 Liposomes 55
3.2.3 Polymersomes 57
3.2.4 Vesicles based on Small Molecules 59
3.2.5 Direct Synthesis 62
3.3 Synthesis of Hard Vesicles 64
3.3.1 “Soft” Templates for the Synthesis of Hard Vesicles 64
3.3.2 Hollow Silica Spheres 66
3.4 Characterization of Vesicular Structures 68
3.4.1 Microscopy 69
3.4.2 Scattering 69
3.5 Stimuli-Responsive Behaviors of Vesicular Structures 72
3.5.1 Thermo-Responsive Vesicles 72
3.5.2 pH-Responsive Vesicles 74
3.5.3 Others 76
3.6 Application of Vesicles 78
3.6.1 Molecular Separation by Vesicles 79
3.6.2 Chemical Sensors 81
3.6.3 Nanoreactors and Microreactors 84
3.6.4 Catalysts 86
3.6.5 Drug Delivery Vehicles 89
3.7 Conclusions 91
Acknowledgment 92
References 92
Part 2: Stimuli-Responsive Interfaces 105
4 Computational Modeling of Sensing Membranes and Supramolecular Interactions 107
Giacomo Saielli
4.1 Introduction 107
4.2 Non-covalent Interactions: A Physical and a Chemical View 109
4.3 Physical Interactions 109
4.4 Chemical Interactions 114
4.5 Computational Methods for Supramolecular Interactions 117
4.6 Classical Force Fields 127
4.7 Conclusions 139
References 140
5 Sensing Techniques Involving Thin Films for Studying Biomoiecular Interactions and Membrane Fouling Phenomena 145
Gabriela Diaconu and Thomas Sch?fer
5.1 Introduction 145
5.2 Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) 146
5.3 Surface Plasmon Resonance (SPR) 148
5.4 Applications of SPR and QCM-D 151
5.5 Conclusions 159
Acknowledgements 160
References 160
6 Smart Membrane Surfaces: Wettability Amplification and Self-Healing 161
Annarosa Gugliuzza
6.1 Introduction 161
6.2 Basics of surface wettability 162
6.3 Amplified Wettability 164
6.4 Actuation Mechanisms 165
6.4.1 Electrical Switching 165
6.4.2 Light-Driven Switching 166
6.4.3 Thermal Switching 168
6.4.4 pH-Driven Switching 168
6.4.5 Molecular Switching 169
6.4.6 Mechanical switching 170
6.5 Self-Powered Liquid Motion 170
6.6 Self-Cleaning Mechanisms 172
6.6.1 Droplet Roll-Off On Superhydrophobic Surfaces 173
6.6.2 Photocatalysis For Self-Cleaning Surfaces 174
6.7 Self-Healing Concepts And Strategies 175
6.8 Repairable Surface Properties 177
6.8.1 Restoring Surface Superhydrophobicity 178
6.8.2 Self-Healing for Durable Anti-Fouling Properties 178
6.9 Conclusions and Perspectives 179
References 180
7 Model Bio-Membranes Investigated by AFM and AFS: A Suitable Tool to Unravel Lipid Organization and their Interaction with Proteins 185
Andrea Alessandrini and Paolo Facci
7.1 Introduction 186
7.2 Supported Lipid Bilayers 189
7.2.1 Preparation Techniques 189
7.2.2 Chemical-Physical Properties of Supported Lipid Bilayers 191
7.2.3 Transmembrane Protein Inclusion 197
7.3 Atomic Force Microscopy (AFM) and Phase Behavior of Slbs 199
7.3.1 Transitions Induced by Temperature 199
7.3.2 Transitions Induced by pH 204
7.4 Atomic Force Spectroscopy (AFS) of Supported Lipid Bilayers 205
7.4.1 Mechanical Moduli Studied by AFS 208
7.4.2 Energy Landscape of Lipid Bilayer Breakthrough and Comparison with Lipid Pore Formation 210
7.5 Lipid/Protein Interactions 213
7.5.1 Protein Partitioning in Membrane Domains 213
7.5.2 Functional Relevance of Partitioning 216
7.6 Conclusions 218
References 218
Part 3: Directed Molecular Separation 227
8 Self-Assembled Nanoporous Membranes for Controlled Drug Release and Bioseparation 229
Dominique Scalarone, Pierangiola Bracco and Francesco Trotta
8.1 Introduction 229
8.2 General Aspects of Block Copolymer Self-Assembly 231
8.3 Block Copolymer Based Membranes 233
8.4 Fabrication of Nanoporous Membranes Derived from Block Copolymers 234
8.4.1 Structure of Nanoporous Membranes: Composite and Stand-alone Membranes 234
8.4.2 Controlling Ordering and Orientation in Block Copolymer Derived Membranes 238
8.4.3 Pore Generation in Nanostructured Polymer Films 241
8.5 Tunability of Surface Properties 242
8.6 Application of Block Copolymer Derived Membranes to Bioseparation and Controlled Drug Release 244
8.7 Conclusion 250
References 250
Abbreviations 253
9 Hybrid Mesoporous Silica for Drug Targeting 255
Luigi Pasqua, Piluso Rosangela, Ilenia Pelaggi and Catia Morelli
9.1 Introduction 256
9.2 Synthesis and Characterization of Bifunctional Hybrid Mesoporous Silica Nanoparticles Potentially Useful for Drug Targeting 257
9.3 Drug-Loaded Folic-Acid-Grafted Msns Specifically Target FR Expressing Tumour Cells [ 16] 260
9.4 Conclusion 266
References 268
10 Molecular Recognition-driven Membrane Processes 269
Laura Donato, Rosalinda Mazzei, Catia Algieri, Emma Piacentini, Teresa Poerio and Lidietta Giorno
10.1 Molecular Imprinting Technique 270
10.1.1 Molecularly Imprinted Membranes (MIMs) 271
10.1.2 MIMs Preparation: Methods And Materials 271
10.1.3 Application Of MIMs 273
10.2 Affinity Membranes 275
10.2.1 Preparation Of Affinity Membranes 276
10.2.2 Affinity Membranes For Chiral Separation 279
10.2.3 Affinity Membranes For Protein Separation 280
10.3 Cyclodextrins As Molecular Recognition Elements 281
10.4 Zeolite Membranes as Molecular Recognition Devices: Preparation and Characterization 283
10.4.1 Zeolite Membranes In Pharmaceutical Field 284
10.4.2 Zeolite: Materials For Sensors 286
10.5 Functionalized Particles-loaded Membranes For Selective Separation Based On Molecular Recognition 287
10.6 Biphasic Enzyme Membrane Systems with Enantioselective Recognition Properties for Kinetic Resolution 291
10.7 Membrane Surface Modification 292
10.7.1 Coating 292
10.7.2 Self-assembly 293
10.7.3 Chemical Treatment 293
10.7.4 Plasma Treatment 294
10.7.5 Graft Polymerization 294
References 296
Part 4: Membrane Sensors and Challenged Applications 301
11 Electrospun Membranes for Sensors Applications 303
Pierattgiola Bracco, Dominique Scalarone and Francesco Trotta
11.1 Introduction 303
11.2 Basic Principles of Electrospinning 304
11.3 Control of the Electrospinning Process 306
11.3.1 Fibers Morphology and Diameter 306
11.3.2 Fibers Arrangement, Composition and Secondary Structure 308
11.4 Application of Electrospun Materials to Ultrasensitive Sensors 311
11.4.1 Metal-Oxide-Based Resistive Sensors 311
11.4.2 Conducting Polymer Based Resistive Sensors 316
11.4.3 Optical Sensors 319
11.4.4 Acoustic Wave Sensors 322
11.4.5 Amperometric Biosensors 325
11.5 Conclusions 329
Abbreviations 330
References 330
12 Smart Sensing Scaffolds 337
Carmelo De Maria, Yudatt U hulanza, Giovanni Vozzil and Arti Ahlnwalia
12.1 Introduction 337
12.2 Composite Sensing Biomaterial Preparation 339
12.3 Composite Sensing Biomaterial Characterisation 340
12.4 SWNTs-Based Composite Films Structural Properties 341
12.5 Tensile Properties of SWNTs-Based Composite Films 343
12.6 Electrical Properties of SWNTs-Based Composites Films 348
12.7 Electromechanical Characterisation and Strain-Dependence Measurement 350
12.8 Cell Sensing Scaffolds 352
12.8.1 Preparation 352
12.8.3 Cell Testing 353
12.8.4 Membrane impedance measurement 354
12.8.5 Modelling Sensing Scaffold 357
12.9 Processing of CNT Composite: Microfabrication of Sensing Scaffold 360
12.10 Conclusions 361
References 362
13 Nanostructured Sensing Emulsion Droplets and Particles: Properties and Formulation by Membrane Emulsification 367
Emma Piacentini, Alessandra Imbrogno and Lidietta Giorno
13.1 Introduction 367
13.2 Emulsions and Emulsification Methods 370
13.2.1 Rotor-stator Systems 370
13.2.2 High-pressure Homogenizer 371
13.2.3 Ultrasonication 371
13.2.4 Membrane Emulsification 371
13.2.5 Membrane Parameters 375
13.2.6 Phase Parameters 376
13.2.7 Process Parameters in Dynamic Membrane Emulsification 377
13.2.8 Membrane Emulsifications Devices 378
13.2.9 Material nature and sensing properties 380
13.2.10 Temperature and pH responsive-materials 380
13.2.11 Physical Sensitive Material (Light, Magnetic and Electrical Field) 386
13.2.12 Biochemical Responsive Materials 387
13.2.13 Phase Change Material (PCM) 388
13.3 Senging Particles Produced by Membrane-Based Process 389
13.3.1 Temperature and pH Responsive-materials 389
13.3.2 Biochemical Responsive Materials 392
13.3.3 Physical Sensitive Material 395
13.3.4 Molecular Imprinting 397
13.4 Conclusions 397
References 398
14 Membranes for Ultra-Smart Textiles 401
Annarosa Gugliuzza and Enrico Drioli
14.1 Introduction 401
14.2 Membranes and Comfort 403
14.2.1 Breathable Membranes 404
14.2.2 Membranes as Heat Exchangers 406
14.3 Adaptive Membranes for Smart Textiles 407
14.3.1 Shape Memory-based Membranes 408
14.3.2 Responsive Gel-based Membranes 409
14.3.3 Phase Changing Materials (PCMs) in Membranes 410
14.3.4 Photochromie Compounds for Smart Membranes 411
14.4 Barrier Functions of Membranes 411
14.4.1 Waterproof Function 412
14.4.2 Antibacterial Action 412
14.4.3 Scents Release and Superabsorbent Action 412
14.4.4 Warfare Agent Defense 413
14.5 Membrane Materials for Self-cleaning Function 413
14.6 Interactive Membranes for Wearable Electronics 414
14.7 Conclusions and Prospects 415
References 416