Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама




Название: Лекции по дифференциальной геометрии
Автор: Сизый С.В.
Издательство: М.: ФИЗМАТЛИТ
Год: 2007
Формат: djvu
Страниц: 376
Размер: 11 mb
Язык: русский

Настоящее учебное пособие представляет собой переработанный конспект лекций по курсу «Дифференциальная геометрия» для студентов математико-механического факультета Уральского государственного университета. В пособии представлены два традиционных раздела дифференциальной геометрии — теория кривых и теория поверхностей в аффинных евклидовых пространствах.

Книга включает в себя следующие темы:
Предварительные сведения и договоренности
Векторные пространства
Ориентация
Билинейные и квадратичные формы
Евклидовы пространства
Векторные функции скалярного аргумента
Обобщенное векторное произведение
Аффинные евклидовы пространства
КРИВЫЕ
Общие сведения о кривых в аффинных евклидовых пространствах
Определение гладкой кривой. Регулярность. Длина кривой
Замена параметра. Эквивалентность кривых
Кривые единичной скорости
Плоские кривые. Экскурсия к истокам дифференциальной геометрии
Линии на плоскости
Касание плоских кривых. Огибающая
Репер Френе плоской кривой единичной скорости
Натуральные уравнения кривой
Репер Френе и кривизна произвольной регулярной плоской кривой
Понятие о сферическом отображении — замечательной идее Гаусса
Локальное строение плоских кривых
Эволюта и эвольвента
Общая локальная теория кривых
Кривые общего вида
Репер Френе кривой общего вида
Теорема Френе–Жордана. Уравнения Френе кривой общего вида
Кривые общего вида в трехмерном пространстве
Свойства кривизн кривых общего вида
Основная теорема локальной теории кривых
Теорема о последней кривизне
Кривые с постоянными кривизнами
ПОВЕРХНОСТИ
Понятие поверхности
Дифференциал гладкого отображения
Определение поверхности. Касательное пространство. Касательное расслоение
Примеры поверхностей
Внутренняя геометрия поверхности
Первая фундаментальная форма
Длина кривой вдоль поверхности
Углы на поверхности
Объем поверхности
Замена параметров на поверхности. Изометричность поверхностей
Внешняя геометрия гиперповерхностей
Нормальное гауссово поле. Дифференциал нормального отображения
Основной оператор гиперповерхности и вторая фундаментальная форма
Матрица основного оператора гиперповерхности. Кривизны и главные направления. Линии кривизны
окальноестроениегиперповерхности
Нормальная кривизна. Теорема Менье. Теорема Эйлера. Асимптотические линии
Движение репера вдоль поверхности
Производные базисных векторов. Коэффициенты связности
Уравнения Гаусса–Петерсона–Кодацци–Майнарди
Тензоры
Тензоры кривизны Леви-Чивита и Римана. Теорема «egregium» Гаусса
Ковариантное ускорение. Геодезические
Вариации кривых на поверхности. Экстремальные свойства геодезических
Ковариантное дифференцирование








ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!







Автор: na5ballov 26-12-2017, 13:43 | Напечатать |
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MirKnig.Su  ©2024     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности